High Reynolds Viscous Flow Simulation Past the Elliptical Airfoil by Random Vortex Blob

Authors

  • Behrooz Zafarmand Department of Mechanical Engineering, Institute of Energy & Hydro Technology (IEHT)
  • Nader Ghadirzad Department of Mechanical Engineering, Islamic Azad University of Mashhad, Iran
Abstract:

In this paper, numerical simulation for a two-dimensional viscous and incompressible flow past the elliptical airfoil is presented by Random Vortex Blob (RVB). RVB is a numerical technique to solve the incompressible, two-dimensional and unsteady Navier-Stocks equations by converting them to rotational non-primitive formulations. In this method, the velocity vector at a certain point can be calculated without considering any grid around it, so the RVB method can be treated as a meshless method. Accordingly, the turbulent flow past a cylinder as well as an elliptical airfoil is investigated. In both cases, the obtained mean time velocities are compared with available numerical and experimental results where an acceptable agreement is observed. Having known the velocity field, by employing momentum balance, the drag and lift coefficients caused by flow past the elliptical airfoil with different diameter ratios and Re=105 are calculated and compared with experimental data where a good consistency is achieved.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers

Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...

full text

study of unsteady viscous turbulent flow with high reynolds passing one, two & three cylinders by random vortex method (rvm)

analysis of the flow passing cylindrical obstacles is one of the basic issues in fluid dynamics and is of great importance. many surveys have been conducted to investigate the velocity field in potential and viscous flows, as a basis for finding pressure field, and investigation of forces exerted by fluid on obstacles such as uplift and drag forces in different flow regimes. since the nature of...

full text

Viscous Flow at High Reynolds Numbers

Let us first give a heuristic estimates of boundary layer in steady flows. Consider a particle near the wall to be influenced by viscosity. After traveling a distance x from the edge, it has been under viscous influence for a time of t = x/U . Let U be large. For finite x, t is small so that vorticity is spread sideways to the width (νt) ∼ (νx/U). Let us define this width to be the boundary lay...

full text

Numerical Simulation of Flow Past Oscillating Airfoil Using Oscillation of Flow Boundary Condition

The present study is devoted to an approximate modeling for numerical simulation of flows past oscillating airfoils. In this study, it is shown that the harmonic oscillating objects can be studied by simple numerical codes that are not able to solve moving grids. Instead of using moving grid for the simulation of flowfield around an oscillating airfoil, this unsteady flow is solved on a fixed g...

full text

Discrete vortex simulation of the separated flow around a rotating circular cylinder at high Reynolds number

The separated flow around a rotating circular cylinder is investigated by the discrete vortex method combined with the boundary layer theory. The Keller Box method is used to solve the laminar boundary layer in order to determine the separation points on the upper and the lower sides of the rotating circular cylinder. The nascent vortices are then introduced near the separation points. A discre...

full text

Numerical Simulation of the Wake Flow Behind an Ellipse using Random Vortex Method (RESEARCH NOTE)

Direct numerical simulation of the wake flow around and behind a planar ellipse using a random vortex method is presented. Fluid is considered incompressible and the aspect ratios of ellipse and the angles of attacks are varied. This geometry can be a logical prelude to the more complex geometries, but less time dependent experimental measurements are available to validate the numerical results...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 30  issue 12

pages  1903- 1910

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023